Abstract
Topology is now securely established as a means to explore and classify electronic states in crystalline solids. This review provides a gentle but firm introduction to topological electronic band structure suitable for new researchers in the field. I begin by outlining the relevant concepts from topology, then give a summary of the theory of non-interacting electrons in periodic potentials. Next, I explain the concepts of the Berry phase and Berry curvature, and derive key formulae. The remainder of the article deals with how these ideas are applied to classify crystalline solids according to the topology of the electronic states, and the implications for observable properties. Among the topics covered are the role of symmetry in determining band degeneracies in momentum space, the Chern number and topological invariants, surface electronic states, two- and three-dimensional topological insulators, and Weyl and Dirac semimetals
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.