Abstract

The topological effect on thermal conductivity is investigated through the comparison among graphene nanoribbons, carbon nanorings, and the Möbius-like graphene strips (MGS) by molecular dynamics simulation. It is found that the thermal conductivity of MGS is less than one half of that of graphene nanoribbons. The underlying mechanism whereby MGS acquire such low thermal conductivity may be attributable to the enhanced phonon-phonon scattering and localization property, which are induced by the nontrivial topology of Möbius strip. Moreover, by counting in the dimensions of MGS, a lower length/width ratio reduces its thermal conductivity, as the phonon-phonon scattering and localization within might be further elevated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.