Abstract

The Hofstadter model is a simple yet powerful Hamiltonian to study quantum Hall physics in a lattice system, manifesting its essential topological states. Lattice dimerization in the Hofstadter model opens an energy gap at half filling. Here we show that even if the ensuing insulator has a Chern number equal to zero, concomitantly a doublet of edge states appear that are pinned at specific momenta. We demonstrate that these states are topologically protected by inversion symmetry in specific one-dimensional cuts in momentum space, define and calculate the corresponding invariants, and identify a platform for the experimental detection of these novel topological states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.