Abstract
In this paper, we study topological dynamics of high-dimensional systems which are perturbed from a continuous map on R m × R k of the form ( f ( x ) , g ( x , y ) ) . Assume that f has covering relations determined by a transition matrix A. If g is locally trapping, we show that any small C 0 perturbed system has a compact positively invariant set restricted to which the system is topologically semi-conjugate to the one-sided subshift of finite type induced by A. In addition, if the covering relations satisfy a strong Liapunov condition and g is a contraction, we show that any small C 1 perturbed homeomorphism has a compact invariant set restricted to which the system is topologically conjugate to the two-sided subshift of finite type induced by A. Some other results about multidimensional perturbations of f are also obtained. The strong Liapunov condition for covering relations is adapted with modification from the cone condition in Zgliczyński (2009) [11]. Our results extend those in Juang et al. (2008) [1], Li et al. (2008) [2], Li and Malkin (2006) [3], Misiurewicz and Zgliczyński (2001) [4] by considering a larger class of maps f and their multidimensional perturbations, and by concluding conjugacy rather than entropy. Our results are applicable to both the logistic and Hénon families.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.