Abstract

In this paper we will generalize the representation theory developed for finite Tarski algebras given in [7]. We will introduce the notion of Tarski space as a generalization of the notion of dense Tarski set, and we will prove that the category of Tarski algebras with semi-homomorphisms is dually equivalent to the category of Tarski spaces with certain closed relations, called T-relations. By these results we will obtain that the algebraic category of Tarski algebras is dually equivalent to the category of Tarski spaces with certain partial functions. We will apply these results to give a topological characterization of the subalgebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.