Abstract

Many abelian gauge theories in three dimensions flow to interacting conformal field theories in the infrared. We define a new class of local operators in these conformal field theories which are not polynomial in the fundamental fields and create topological disorder. They can be regarded as higher-dimensional analogues of twist and winding-state operators in free 2d CFTs. We call them monopole operators for reasons explained in the text. The importance of monopole operators is that in the Higgs phase, they create Abrikosov-Nielsen-Olesen vortices. We study properties of these operators in three-dimensional QED using large N_f expansion. In particular, we show that monopole operators belong to representations of the conformal group whose primaries have dimension of order N_f. We also show that monopole operators transform non-trivially under the flavor symmetry group, with the precise representation depending on the value of the Chern-Simons coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.