Abstract

Microwave absorption plays an important role on many aspects such as stealth technologies and electromagnetic compatibility. In this work, topological optimization is applied for the proposed laminate metastructure (LM) to achieve broadband and wide incident-angle microwave absorption. A new and efficient version of genetic algorithms (GA), namely the large mutation genetic algorithms (LMGA) is introduced in the bi-directional evolutionary optimization (BEO) methodology which is distinguishing from the traditional bi-directional evolutionary structural optimization (BESO). Topological optimization for patterned resistive films and size optimization for spacer thickness are integrated in the program. The optimized two-dimensional patterns of the metasurface are given. The thickness optimization range is limited below 4 mm to reduce the total thickness of LM. The optimized and fabricated specimen achieves −10dB absorption bandwidth in 2.0–22.9 GHz with total thickness of 16.05 mm, small areal density of 4.19 kg/m2 and equivalent flexural strength of 23.12 MPa. A three-stage nonlinear model on the bending and buckling of LM is given, and the experimental and theoretical deflection-load curves match well. The proposed LM achieves multifunctional features of broadband microwave absorption and effective mechanical resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.