Abstract

This paper presents a new approach to designing periodic microstructures of cellular materials. The method is based on the bidirectional evolutionary structural optimization (BESO) technique. The optimization problem is formulated as finding a micro-structural topology with the maximum bulk or shear modulus under a prescribed volume constraint. Using the homogenization theory and finite element analysis within a periodic base cell (PBC), elemental sensitivity numbers are established for gradually removing and adding elements in PBC. Numerical examples in 2D and 3D demonstrate the effectiveness of the proposed method for achieving convergent microstructures of cellular materials with maximum bulk or shear modulus. Some interesting topological patterns have been found for guiding the cellular material design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call