Abstract

Customized spinal implants fabricated by additive manufacturing have been increasingly used clinically to restore the physiological functions. However, the mechanisms and methods about the design for the spinal implants are not clear, especially for the reconstruction of multi-segment vertebral. This study aims to develop a novel multi-objective optimization methodology based on various normal spinal activities, to design the artificial vertebral implant (AVI) with lightweight, high-strength and high-stability. The biomechanical performance for two types of AVI was analyzed and compared under different loading conditions by finite element method. These implants were manufactured via selective laser melting technology and evaluated via compressive testing. Results showed the maximum Mises stress of the optimized implant under various load cases were about 41.5% of that of the trussed implant, and below fatigue strength of 3D printed titanium materials. The optimized implant was about 2 times to trussed implant in term of the maximum compression load and compression stiffness to per unit mass, which indicated the optimized implant can meet the safety requirement. Finally, the optimized implant has been used in clinical practice and good short-term clinical outcomes were achieved. Therefore, the novel developed method provides a favorable guarantee for the design of 3D printed multi-segment artificial vertebral implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.