Abstract

An algorithm for topology optimization of elastic structures under plane stress subject to the Drucker–Prager stress constraint is presented. The algorithm is based on the use of the topological derivative of the associated objective functional in conjunction with a level-set representation of the structure domain. In this context, a penalty functional is proposed to enforce the point-wise stress constraint and a closed formula for its topological derivative is derived. The resulting algorithm is of remarkably simple computational implementation. It does not require post-processing procedures of any kind and features only a minimal number of user-defined algorithmic parameters. This is in sharp contrast with current procedures for topological structural optimization with local stress constraints. The effectiveness and efficiency of the algorithm presented here are demonstrated by means of numerical examples. The examples show, in particular, that it can easily handle structural optimization problems with underlying materials featuring strong asymmetry in their tensile and compressive yield strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.