Abstract
We study topological defects as inhomogeneous (localized) condensates of particles in quantum field theory. In the framework of the closed-time-path formalism, we consider explicitly a (1+1) dimensional λψ4 model and construct the Heisenberg picture field operator ψ in the presence of kinks. We show how the classical kink solutions emerge from the vacuum expectation value of such an operator in the Born approximation and/or λ→0 limit. The presented method is general in the sense that it applies also to the case of finite temperature and to non-equilibrium; it also allows for the determination of Green's functions in the presence of topological defects. We discuss the classical kink solutions at T≠0 in the high temperature limit. We conclude with some speculations on the possible relevance of our method for the description of the defect formation during symmetry-breaking phase transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.