Abstract

Defects in nanocarbon materials can trigger their intriguing electrochemical properties and potential applications, but their synthesis is challenging. Herein, we report the synthesis of ultrathin nitrogen-doped carbon nanosheets with intrinsic defects through the pyrolysis of ZIF-8 with linker vacancies. The as-synthesized electrocatalyst exhibits excellent oxygen reduction reaction (ORR) activity with an onset potential and half-wave potential of 1.05 and 0.873 V vs. RHE, respectively, outperforming the reported metal-free ORR electrocatalysts. It also shows a commercial Pt/C-comparable performance in zinc–air battery with a power density of 154.4 mW cm−2. Characterization and DFT calculation results suggest the adjacent sp3-carbon in carbon pentagon can significantly strengthen the adsorption and activation of oxygen molecules on sp2-carbon, hence the potential determining step is altered and ORR overpotential is lowered. This work highlights a promising green synthesis strategy of MOF-derived metal-free nanocarbon materials for wide application in advanced energy technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call