Abstract
Topological data analysis provides tools to capture wide-scale structural shape information in data. Its main method, persistent homology, has found successful applications to various machine-learning problems. Despite its recent gain in popularity, much of its potential for medical image analysis remains undiscovered. We explore the prominent learning problems on thoracic radiographic images of lung tumors for which persistent homology improves radiomic-based learning. It turns out that our topological features well capture complementary information important for benign versus malignant and adenocarcinoma versus squamous cell carcinoma tumor prediction while contributing less consistently to small cell versus non-small cell-an interesting result in its own right. Furthermore, while radiomic features are better for predicting malignancy scores assigned by expert radiologists through visual inspection, we find that topological features are better for predicting more accurate histology assessed through long-term radiology review, biopsy, surgical resection, progression, or response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.