Abstract

Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL 933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 EDL 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters.

Highlights

  • Food-borne outbreaks associated with contaminated produce have heightened concerns about the adequacy of control measures for the safe production of fresh fruits and vegetables

  • There are leafy green vegetable associated outbreaks caused by Salmonella and Cyclospora, a majority of them have been due to food contamination with Escherichia coli O157:H7 (Sivapalasingam et al, 2004)

  • One of the worst incidents to date was a multistate Escherichia coli O157:H7 outbreak in August and September 2006, which was associated with consumption of fresh, bagged spinach that was traced to a field in California (California Food Emergency Response Team, 2007a,b; Cooley et al, 2007; Jay et al, 2007)

Read more

Summary

Introduction

Food-borne outbreaks associated with contaminated produce have heightened concerns about the adequacy of control measures for the safe production of fresh fruits and vegetables. One of the worst incidents to date was a multistate Escherichia coli O157:H7 outbreak in August and September 2006, which was associated with consumption of fresh, bagged spinach that was traced to a field in California (California Food Emergency Response Team, 2007a,b; Cooley et al, 2007; Jay et al, 2007). During this outbreak, the CDC reported over 200 illnesses, 104 hospitalizations and 3 deaths

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call