Abstract

Topological Data Analysis (TDA) and its mainstay computational device, persistent homology (PH), has established a strong track record of providing researchers across the data-driven sciences with new insights and methodologies by characterizing low-dimensional geometric structures in high-dimensional data. When combined with machine learning (ML) methods, PH is valued as a discriminating-feature extraction tool. This work highlights many of the recent successes at the intersection of TDA and ML, introduces some of the foundational mathematics underpinning TDA, and summarizes the efforts to strengthen the bridge between TDA and ML. Thus, this document is a launching point for experimentalists and theoreticians to consider what can be learned from the shape of their data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.