Abstract
Abstract We introduce topological contact dynamics of a smooth manifold carrying a cooriented contact structure, generalizing previous work in the case of a symplectic structure [27] or a contact form [5]. A topological contact isotopy is not generated by a vector field; nevertheless, the group identities, the transformation law, and classical uniqueness results in the smooth case extend to topological contact isotopies and homeomorphisms, giving rise to an extension of smooth contact dynamics to topological dynamics. Our approach is via symplectization of a contact manifold, and our main tools are an energy-capacity inequality we prove for contact diffeomorphisms, combined with techniques from measure theory on oriented manifolds. We establish non-degeneracy of a Hofer-like bi-invariant pseudo-metric on the group of strictly contact diffeomorphisms constructed in [4]. The topological automorphism group of the contact structure exhibits rigidity properties analogous to those of symplectic diffeomorphisms, including C0-rigidity of contact and strictly contact diffeomorphisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.