Abstract
In the context of partially ordered vector spaces one encounters different sorts of order convergence and order topologies. This article investigates these notions and their relations. In particular, we study and relate the order topology presented by Floyd, Vulikh and Dobbertin, the order bound topology studied by Namioka and the concept of order convergence given in the works of Abramovich, Sirotkin, Wolk and Vulikh. We prove that the considered topologies disagree for all infinite dimensional Archimedean vector lattices that contain order units. For reflexive Banach spaces equipped with ice cream cones we show that the order topology, the order bound topology and the norm topology agree and that order convergence is equivalent to norm convergence.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.