Abstract

We prove that the topological complexity of every symplectically atoroidal manifold is equal to twice its dimension. This is the analogue for topological complexity of a result of Rudyak and Oprea, who showed that the Lusternik–Schnirelmann category of a symplectically aspherical manifold equals its dimension. Symplectically hyperbolic manifolds are symplectically atoroidal, as are symplectically aspherical manifolds whose fundamental group does not contain free abelian subgroups of rank two. Thus we obtain many new calculations of topological complexity, including iterated surface bundles and symplectically aspherical manifolds with hyperbolic fundamental groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.