Abstract

AbstractEarthquake clustering is a significant feature of seismic catalogs, both in time and space. Several methodologies for earthquake cluster identification have been proposed in the literature in order to characterize clustering properties and to analyze background seismicity. We consider two recent data‐driven declustering techniques, one based on nearest‐neighbor distance and the other on a stochastic point process. These two methods use different underlying assumptions and lead to different classifications of earthquakes into background events and clustered events. We investigated the classification similarities by exploiting graph representations of earthquake clusters and tools from network analysis. We found that the two declustering algorithms produce similar partitions of the earthquake catalog into background events and earthquake clusters, but they may differ in the identified topological structure of the clusters. Especially the clusters obtained from the stochastic method have a deeper complexity than the clusters from the nearest‐neighbor method. All of these similarities and differences can be robustly recognized and quantified by the outdegree centrality and closeness centrality measures from network analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.