Abstract

We study countable compact spaces as potential attractors of iterated function systems. We give an example of a convergent sequence in the real line which is not an IFS-attractor and for each countable ordinal δ we show that a countable compact space of height δ+1 can be embedded in the real line so that it becomes the attractor of an IFS. On the other hand, we show that a scattered compact metric space of limit height is never an IFS-attractor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.