Abstract

A topological classification, up to Liouville (leafwise) equivalence of integrable Hamiltonian systems given by flows with a smooth potential on two-dimensional surfaces of revolution is presented. It is shown that the restrictions of such systems to three-dimensional isoenergy surfaces can be modelled by the geodesic flows (without potential) of certain surfaces of revolution. It is also shown that in many important cases the systems under consideration are equivalent to other well-known mechanical systems. Bibliography: 29 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.