Abstract

A Laguerre–Gaussian (LG) vortex beam having a spiral wavefront can be characterized by its topological charge (TC). The TC gives the number of times that the beam phase passes through the interval [0, 2pi ] following a closed loop surrounding the propagation axis. Here, the TC spectra of soft X-ray vortex beams are acquired using the in-line holography technique, where interference between vortex waves produced from a fork grating and divergent waves from a Fresnel zone plate is observed as a holographic image. The analyses revealed the phase distributions and the TC for the LG vortex waves, which reflects topological number of the fork gratings, as well as for the Hermite–Gaussian (HG) mode waves generated from the other gratings. We also conducted a simulation of the present technique for pair annihilation of topological defects in a magnetic texture. These results may pave the way for development of probes capable of characterizing the topological numbers of magnetic defects.

Highlights

  • We demonstrated inline holography experiments for soft X-ray vortex beams produced by several types of optical gratings

  • After analyzing the obtained holographic images, the topological charge (TC) of the LG vortex waves is successfully extracted, which reflect the topological numbers of the gratings, as well as the HG waves

  • We presented a simulation of the practical application of inline holography technique for pair annihilation of magnetic edge dislocations in a helical magnetic lattice

Read more

Summary

Introduction

The TC spectra of soft X-ray vortex beams are acquired using the in-line holography technique, where interference between vortex waves produced from a fork grating and divergent waves from a Fresnel zone plate is observed as a holographic image. The analyses revealed the phase distributions and the TC for the LG vortex waves, which reflects topological number of the fork gratings, as well as for the Hermite–Gaussian (HG) mode waves generated from the other gratings.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.