Abstract

We investigate the interplay between topological charge and the spectrum of the fermion matrix in lattice-QED_2 using analytic methods and Monte Carlo simulations with dynamical fermions. A new theorem on the spectral decomposition of the fermion matrix establishes that its real eigenvalues (and corresponding eigenvectors) play a role similar to the zero eigenvalues (zero modes) of the Dirac operator in continuous background fields. Using numerical techniques we concentrate on studying the real part of the spectrum. These results provide new insights into the behaviour of physical quantities as a function of the topological charge. In particular we discuss fermion determinant, effective action and pseudoscalar densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call