Abstract

Coordination-driven self-assembly (CDSA) is increasingly used to synthesize coordination complexes containing metal-centered electron acceptors and typically nitrogen-containing electron donors. Characterization of the structures obtained from CDSA via crystallographic or spectroscopic means is limited due to difficulties in forming single crystals for X-ray studies and overlapping precursor and product signals in NMR. Here, we employ ion mobility-mass spectrometry (IM-MS), which provides a direct measure of size and shape of the CDSA complexes, to study the intact reaction productsof a rhomboid-shaped complex. This approach negates the need for product isolation and crystallization and allows for tracking of the product distribution as a function of time. A potential challenge of IM-MS is that the size/shape of the observed CDSA complexes can vary with internal energy; however, we show that proper tuning of the instrument reduces the effects of collisional activation thereby allowing for retention of ion conformations that reflect solution-phase ion structures. Graphical Abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.