Abstract
All three-manifolds are known to occur as Cauchy surfaces of asymptotically flat vacuum spacetimes and of spacetimes with positive-energy sources. We prove here the conjecture that general relativity does not allow an observer to probe the topology of spacetime: any topological structure collapses too quickly to allow light to traverse it. More precisely, in a globally hyperbolic, asymptotically flat spacetime satisfying the null energy condition, every causal curve from $\scri^-$ to ${\scri}^+$ is homotopic to a topologically trivial curve from $\scri^-$ to ${\scri}^+$. (If the Poincar\'e conjecture is false, the theorem does not prevent one from probing fake 3-spheres).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.