Abstract
We consider the Einstein-Gauss-Bonnet gravity with a negative cosmological constant together with a source given by a scalar field nonminimally coupled in arbitrary dimension D. For a certain election of the cosmological and Gauss-Bonnet coupling constants, we derive two classes of AdS black hole solutions whose horizon is planar. The first family of black holes obtained for a particular value of the nonminimal coupling parameter only depends on a constant M, and the scalar field vanishes as M=0. The second class of solutions corresponds to a two-parametric (with constants M and A) black hole stealth configuration, that is a nontrivial scalar field with a black hole metric such that both side (gravity and matter parts) of the Einstein equations vanishes. In this case, in the vanishing M, the solution reduces to a stealth scalar field on the pure AdS metric. We note that the existence of these two classes of solutions is inherent of the particular choice of the coupling constants and, they can not be promoted to spherical or hyperboloid black hole solutions in a standard fashion. In the last part, we add to the original action some exacts (D-1)-forms coupled to the scalar field. The direct benefit of introducing such extra fields is to obtain black hole solutions with planar horizon for arbitrary value of the nonminimal coupling parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.