Abstract

Scaling relationships for polymeric molecules establish power law dependencies between the number of molecular segments and linear dimensions, such as the radius of gyration. They also establish spatial topological properties of the chains, such as their dimensionality. In the spatial domain, power exponents α = 1 (linear stretched molecule), α = 0.5 (the ideal chain) and α = 0.333 (compact globule) are significant. During folding, the molecule undergoes the transition from the one-dimensional linear to the three-dimensional globular state within a very short time. However, intermediate states with fractional dimensions can be stabilized by modifying the solubility (e.g. by changing the solution temperature). Topological properties, such as dimension, correlate with the interaction energy, and thus by tuning the solubility one can control molecular interaction. We investigate these correlations using the example of a well-studied short model of Trp-cage protein. The radius of gyration is used to estimate the fractal dimension of the chain at different stages of folding. It is expected that the same principle is applicable to much larger molecules and that topological (dimensional) characteristics can provide insights into molecular folding and interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.