Abstract

This paper is devoted to periodic traveling waves solving Lie–Poisson equations based on the Virasoro group. We show that the reconstruction of any such solution can be carried out exactly, regardless of the underlying Hamiltonian (which need not be quadratic), provided the wave belongs to the coadjoint orbit of a uniform profile. Equivalently, the corresponding “fluid particle motion” is integrable. Applying this result to the Camassa–Holm equation, we express the drift of particles in terms of parameters labeling periodic peakons and exhibit orbital bifurcations: points in parameter space where the drift velocity varies discontinuously, reflecting a sudden change in the topology of Virasoro orbits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.