Abstract

Biclustering is a powerful tool for exploratory data analysis in domains such as social networking, data reduction, and differential gene expression studies. Topological learning identifies connected regions that are difficult to find using other traditional clustering methods and produces a graphical representation. Therefore, to improve the quality of biclustering and module extraction, this work combines the adaptive resonance theory (ART)-based methods of biclustering ARTMAP (BARTMAP) and topological ART (TopoART), to produce TopoBARTMAP. The latter inherits the ability to detect topological associations while performing data reduction. The capabilities of TopoBARTMAP were benchmarked using 35 real world cancer datasets and contrasted with other (bi)clustering methods, where it showed a statistically significant improvement over the other assessed methods on ordered and shuffled data experiments. In experiments with 12 synthetic datasets, the method was observed to perform better at identifying constant, scale, shift, and shift scale type biclusters. The produced graphical representation was refined to represent gene bicluster associations and was assessed on the NCBI GSE89116 dataset containing expression levels of 39,326 probes sampled over 38 observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.