Abstract

We analyze a hydrodynamical model of a polar fluid in (3+1)-dimensional spacetime. We explore a spacetime symmetry -- volume preserving diffeomorphisms -- to construct an effective description of this fluid in terms of a topological BF theory. The two degrees of freedom of the BF theory are associated to the mass (charge) flows of the fluid and its polarization vorticities. We discuss the quantization of this hydrodynamic theory, which generically allows for fractionalized excitations. We propose an extension of the Girvin-MacDonald-Platzman algebra to (3+1)-dimensional spacetime by the inclusion of the vortex-density operator in addition to the usual charge density operator and show that the same algebra is obeyed by massive Dirac fermions that represent the bulk of $\mathbb{Z}^{\,}_{2}$ topological insulators in three-dimensional space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.