Abstract

Hyperbolic metamaterials (HMMs), an unusual class of electromagnetic metamaterials, have found important applications in various fields due to their distinctive properties. A surprising feature of HMMs is that even continuous HMMs can possess topological edge modes. However, previous studies based on equal-frequency surface (analogy of Fermi surface) may not correctly capture the topology of entire bands. Here we develop a topological band description for continuous HMMs that can be described by a non-Hermitian Hamiltonian formulated from Maxwell's equations. We find two types of three-dimensional non-Hermitian triply degenerate points with complex linear dispersions and topological charges ±2 and 0 induced by chiral and gyromagnetic effects. Because of the photonic nature, the vacuum band plays an important role for topological edge states and bulk-edge correspondence in HMMs. The topological band results are numerically confirmed by direct simulation of Maxwell's equations. Our work presents a general non-Hermitian topological band treatment of continuous HMMs, paving the way for exploring interesting topological phases in photonic continua and device implementations of topological HMMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call