Abstract

Knots and embedded graphs are useful models for simulating polymer chains. In particular, a theta curve motif is present in a circular protein with internal bridges. A theta-curve is a graph embedded in three-dimensional space which consists of three edges with shared endpoints at two vertices. If we cannot continuously transform a theta-curve into a plane without intersecting its strand during the deformation, then it is said to be nontrivial. A Brunnian theta-curve is a nontrivial theta-curve that becomes a trivial knot if any one edge is removed. In this paper we obtain qualitative results of these theta-curves, using the lattice stick number which is the minimal number of sticks glued end-to-end that are necessary to construct the theta-curve type in the cubic lattice. We present lower bounds of the lattice stick number for nontrivial theta-curves by 14, and Brunnian theta-curves by 15.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call