Abstract

We study the topological properties of finite-size S-shaped graphene junctions with distinctive edge features subjected to the perpendicular magnetic field, using the tight-binding model. The quantum confinement and edge effects induced by the specific junction give rise to significant modifications in the Hofstadter spectra of the bent flakes, when compared to those of their perfect forms. Moreover, the results show that in absence of a magnetic field, the sharpest zigzag-edged corners support the edge states rather than the others, but the magnetic field leads to the localization of the edge states along the whole perimeter of the flakes. Furthermore, based on the Green’s function method, we investigate the electron transport through our proposed junctions. We show that, under magnetic flux, one can effectively control the energy gap and the conductance around the Fermi energy. Moreover, the transitions between metallic, semimetallic, and semiconducting phases are possible by the magnetic flux in the S-shaped junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.