Abstract
We study the ground-state phase diagram and dynamics of the one-dimensional cluster model with several competing interactions. Paying particular attention to the relation between the entanglement spectrum (ES) and the bulk topological (winding) number, we first map out the ground-state phases of the model and determine the universality classes of the transitions from the exact solution. We then investigate the dynamical properties during interaction sweeps through the critical points of topological phase transitions. When the sweep speed is slow, the correlation functions and the entanglement entropy exhibit spatially periodic structures. On top of this, the levels in the ES oscillate temporally during the dynamics. By explicitly calculating the above quantities for excited states, we attribute these behaviors to the Bogoliubov quasiparticles generated near the critical points. We also show that the ES reflects the strength of the Majorana correlation even for the excited states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.