Abstract

This paper presents the combined use of two systematic methods for the synthesis of planar linkage mechanisms satisfying multiple kinematic tasks. First, a Graph Theory-based method is used to exhaustively enumerate the topological alternatives for a given problem. Then each feasible alternative is automatically dimensioned using the Precision Position Method; this computation includes space and design constraints. The existing methods to synthesize multiple tasks solve, in sequence, a decomposition of the problem into single kinematic tasks. The task decomposition and the topology selection for each task are usually performed by hand. This process leads to topologies with a repeated pattern and could lead to ignoring potentially desirable topologies. This paper analyzes a design strategy for the simultaneous solution of multiple kinematic tasks. This strategy has two advantages: (i) it eliminates the need for task decomposition, and (ii) it allows the exhaustive exploration of all non-isomorphic topologies up to a defined number of links. An example of simultaneous synthesis for a double rigid-body guidance task with application to a flap-tab mechanism is shown to illustrate the methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.