Abstract

1-Methyl-4-phenylpyridinium (MPP(+)) was added directly to fresh rat brain slices and the dynamic changes in the cerebral glucose metabolic rate (CMRglc) were serially and two-dimensionally measured with [(18)F]2-fluoro-2-deoxy-D-glucose as a tracer. MPP(+) dose-dependently increased CMRglc, reflecting enhanced glycolysis compensating for the decrease in aerobic metabolism. While the CMRglc enhancement induced by MPP(+) (<10 microM) was restricted to the striatum, MPP(+) (>or=10 microM) induced a significant CMRglc enhancement in all brain regions. MPP(+) at high concentration (1 mM) eventually initiated rapid metabolic collapse, with failure to sustain anaerobic glycolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call