Abstract

We explore the alloy structures that can evolve in nonequilibrium driven systems, using two-dimensional atomistic simulations of mechanical alloying. By tailoring the intrinsic system thermodynamics we demonstrate the evolution of alloys with various states of topological and chemical ordering, including random solid solutions with both crystalline and amorphous topology, short-range ordered glasses and crystals, and segregated dual-phase systems. Our observations are broadly consistent with the experimental literature for mechanical alloying of binary systems. Further, while most of our results can be rationalized on the grounds of existing theories for either (i) glass formation and stability or (ii) nonequilibrium systems under external driving, we also observe strong correlations between topological and chemical ordering which have not yet been addressed in the context of driven systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.