Abstract
Photosynthesis gene expression in Rhodobacter sphaeroides is controlled in part by the two-component (Prr) regulatory system composed of a membrane-bound sensor kinase (PrrB) and a response regulator (PrrA). Hydropathy profile-based computer analysis predicted that the PrrB polypeptide could contain six membrane-spanning domains at its amino terminus and a hydrophilic, cytoplasmic carboxyl terminus. Both the localization and the topology of the PrrB sensor kinase have been studied by generating a series of gene fusions with the Escherichia coli periplasmically localized alkaline phosphatase and the cytoplasmic beta-galactosidase. Eighteen prrB-phoA and five prrB-lacZ fusions were constructed and expressed in both E. coli and R. sphaeroides. Enzymatic activity assays and immunoblot analyses were performed to identify and to localize the different segments of PrrB in the membrane. The data obtained in E. coli generally correlated with the data obtained in R. sphaeroides and support the computer predictions. On the basis of the theoretical model and the results provided by these studies, a topological model for the membrane localization of the PrrB polypeptide is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.