Abstract

Two pressure-induced phase transitions have been theoretically studied in the layered iron phosphorus triselenide (FePSe3 ). Topological analysis of chemical bonding in FePSe3 has been performed based on the results of first-principles calculations within the periodic linear combination of atomic orbitals (LCAO) method with hybrid Hartree-Fock-DFT B3LYP functional. The first transition at about 6 GPa is accompanied by the symmetry change from to C2/m, whereas the semiconductor-to-metal transition (SMT) occurs at about 13 GPa leading to the symmetry change from C2/m to . We found that the collapse of the band gap at about 13 GPa occurs due to changes in the electronic structure of FePSe3 induced by relative displacements of phosphorus or selenium atoms along the c-axis direction under pressure. The results of the topological analysis of the electron density and its Laplacian demonstrate that the pressure changes not only the interatomic distances but also the bond nature between the intralayer and interlayer phosphorus atoms. The interlayer P-P interactions are absent in two non-metallic FePSe3 phases while after SMT the intralayer P-P interactions weaken and the interlayer P-P interactions appear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.