Abstract

This paper studies the topological approach to social choice theory initiated by G. Chichilnisky (1980), extending it to the case of a continuum of agents. The social choice rules are continuous anonymous maps defined on preference spaces which respect unanimity. We establish that a social choice rule exists for a continuum of agents if and only if the space of preferences is contractible. We provide also a topological characterization of such rules as generalized means or mathematical expectations of individual preferences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.