Abstract

RNase H2-dependent ribonucleotide excision repair (RER) removes ribonucleotides incorporated during DNA replication. When RER is defective, ribonucleotides in the nascent leading strand of the yeast genome are associated with replication stress and genome instability. Here, we provide evidence that topoisomerase 1 (Top1) initiates an independent form of repair to remove ribonucleotides from genomic DNA. This Top1-dependent process activates the S phase checkpoint. Deleting TOP1 reverses this checkpoint activation and also relieves replication stress and genome instability in RER-defective cells. The results reveal an additional removal pathway for a very common lesion in DNA, and they imply that the "dirty" DNA ends created when Top1 incises ribonucleotides in DNA are responsible for the adverse consequences of ribonucleotides in RNase H2-defective cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call