Abstract
The complete gravity data set from France and part of the neighboring countries has been analyzed to compute the topography of the Moho undulations. This work is based on an improved filtering technique and an appropriate assumed density contrast between the crust and the upper mantle. Comparison with deep seismic refraction data reveals that this relief map expresses the continuity and geometry of the Moho undulations better than the sparsely distributed seismic refraction data in France. This gravity Moho map, though may not give absolute depths at places, provides a far better correlation with surface geology than the result from other geophysical techniques. Four domains have been recognized: (a) the Alpine domain where all the Moho undulations are concentric with the Alps; (b) the Armorican domain in which all the undulations are north-west/south-east oriented; (c) the Pyrenean domain, in which the undulations are parallel with the Mountain chain; and (d) the Massif Central Domain which does not show clear structural orientation because of the influence of the strong heat flow located at the lower crust/upper mantle interface. Study of the topography and of the superficial structures associated with these undulations reveals that the undulations delineated in the Alpine Domain result from the Tertiary compression which shaped the Alps. The Armorican Domain was first created during the Lower to Middle Cretaceous opening of the Bay of Biscay. It is now slightly affected by the Tertiary to Quaternary closure of this Bay. The Pyrenean Domain was successively shaped by the Lower Cretaceous oblique opening of the Bay of Biscay and by the Upper Cretaceous to Eocene northward displacement of Spain. Comparison between the Moho undulations map and the stress map of France reveals that most of the undulations are perpendicular to the actual shortening directions. This observation suggests that the Mesozoic, Cenozoic and Quaternary stress directions were roughly the same. Massif Central is characterized by the convergence of these three sets of undulations. Its Post-Oligocene uplift was probably the result of the converging stresses recognized in the three surrounding domains. When the Moho undulations and the topography are compared, two types of periodic crustal instabilities can be recognized. One corresponds to the buckling of the crust developed under compression, the other to boudinage which was associated with extension. Both phenomena show a typical wavelength of 200–250 km which is in agreement with the results of the actual physical and numerical modeling currently available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.