Abstract

The chromatic pattern-onset VEP has been used successfully as a sensitive and objective technique to determine congenital and acquired color vision deficiency. It also has been applied to characterize development, maturation and aging of the chromatic visual pathways. Here we determine the topographic components of the full-field VEP using the multifocal technique. Recordings were made with the VERIS system that extracts topographic VEPs using a pseudorandom stimulus sequence. Chromatic pattern stimuli were presented in an onset-offset temporal sequence, with colors modulated along different axes in the MBDKL color space. Additional experiments were conducted to verify the S-cone axis for each observer and that our chromatic stimuli were close to isoluminant at different field locations. Our data show reliable and robust chromatic onset VEP responses for multiple retinal areas that conform to pattern-onset full-field VEP waveform characteristics. For stimuli with chromatic contributions, pattern-onsets produced reliable and consistent waveforms whereas for stimuli with large luminance contributions pattern-reversal stimuli were superior. Our method for recording chromatic multifocal pattern-onset VEPs holds promise for clinical application to detect and monitor early retinal and optic nerve changes related to aging and disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call