Abstract

Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG), little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10–13 Hz) and fast (13.25–17 Hz) sigma power from all-night high-density electroencephalography (EEG) in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years). Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV2; and fast sigma power was 0.9 ± 0.2 μV2. Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p < 0.05, r ranging from −0.6 to −0.8), such that greater power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities.

Highlights

  • Childhood is a period of rapid cognitive development, which facilitates increasing flexibility as children engage in more complex interactions with their environment

  • 36%–64% of the variability in processing speed was explained by slow sigma power

  • In the fast sigma frequency range, a relationship was found between power and processing speed when controlling for age

Read more

Summary

Introduction

Childhood is a period of rapid cognitive development, which facilitates increasing flexibility as children engage in more complex interactions with their environment. Visually-scored or automatically-detected sleep spindles and EEG power in the sigma band are increasingly recognized correlates of cognitive ability [15,16,17,18,19]. Spindles become faster from childhood to adolescence [24,29,30,31], and global maturational changes in sigma power predominate in the slow sigma frequency band [32]. The topographic representation of sigma power provides insight into these age-related changes [24,33] by showing that fast sigma power increases over centroparietal areas and that slow sigma power decreases over frontal areas across childhood and adolescence [24,32]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call