Abstract

Formation of a transcriptionally competent open complex is a highly regulated multistep process involving at least two intermediates. The rate of formation and stability of the intermediate complexes often determine promoter strength. However, the detailed mechanism of formation of the open complex and the high resolution structures of these intermediates are not known. In this study the structures of the open and intermediate complexes formed on the lacUV5 promoter by Escherichia coli RNA polymerase were analyzed using 'zero length' DNA-protein cross-linking. In both the open and the intermediate complexes the core subunits (ss' and ss) interact with lacUV5 DNA in a similar way, forming DNA-protein contacts flanking the initiation site. At the same time, the recognition (sigma(70)) subunit closely interacts with the promoter only in the open complex. In combination with our previous results, the data suggest that during promoter recognition contacts of the sigma subunit with core RNA polymerase and promoter DNA are rearranged in concert. These rearrangements constitute a landmark of transition from the intermediate to the open complex, identifying the sigma subunit as a key player directing formation of the open complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.