Abstract

The topography of distribution of 3H-dihydroalprenolol, 3H-quinucledinyl benzilate, 3H-dopamine, and 3H-DAGO binding sites in the central part of the sinoatrial node in rat heart was studied by autoradiography after electrophysiological identification of the dominant pacemaker region location. Receptor asymmetry between the lateral and median regions of the central part of the sinoatrial node was shown. The dominant pacemaker region lay in the lateral area of the sinoatrial node; the number of binding sites for all four ligands was minimum in it. The number of binding sites gradually increased in the cranial and caudal directions from the dominant pacemaker region along the sinoatrial node artery (more smoothly in the caudal direction). The relative densities of bindings sites for 3H-dihydroalprenolol and 3H-dopamine were higher in the lateral region compared to the perinodal working myocardium, while the densities for 3H-quinucledinyl benzilate and 3H-DAGO were virtually the same. The distribution of binding sites along the artery in the median region of the sinoatrial node was even for 3H-quinucledinyl benzilate and 3H-DAGO. For 3H-DAGO these parameters were close to those in the perinodal atrial myocardium, for 3H-quinucledinyl benzilate somewhat lower. Curves presenting the distribution of binding site densities for 3H-dihydroalprenolol and 3H-dopamine in the median region of the sinoatrial node were similar, with a pronounced peak in the region contralateral to the dominant pacemaker region, and significantly higher binding parameters compared to those for the perinodal atrial myocardium. The difference consisted in higher density of 3H-dopamine binding sites in the median region of the sinoatrial node in comparison with the lateral region. Binding activity was maximum in the wall of the sinoatrial node artery. The distribution of binding sites for ligands to the main autonomic nervous system neurotransmitters in the rat heart sinoatrial node is heterogeneous.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call