Abstract

BackgroundTransmission of Plasmodium falciparum generally decreases with increasing elevation, in part because lower temperature slows the development of both parasites and mosquitoes. However, other aspects of the terrain, such as the shape of the land, may affect habitat suitability for Anopheles breeding and thus risk of malaria transmission. Understanding these local topographic effects may permit prediction of regions at high risk of malaria within the highlands at small spatial scales.MethodsHydrologic modelling techniques were adapted to predict the flow of water across the landscape surrounding households in two communities in the western Kenyan highlands. These surface analyses were used to generate indices describing predicted water accumulation in regions surrounding the study area. Households with and without malaria were compared for their proximity to regions of high and low predicted wetness. Predicted wetness and elevation variables were entered into bivariate and multivariate regression models to examine whether significant associations with malaria were observable at small spatial scales.ResultsOn average, malaria case households (n = 423) were located 280 m closer to regions with very high wetness indices than non-malaria "control" households (n = 895) (t = 10.35, p < 0.0001). Distance to high wetness indices remained an independent predictor of risk after controlling for household elevation in multivariate regression (OR = 0.93 [95% confidence interval = 0.89–0.96] for a 100 m increase in distance). For every 10 m increase in household elevation, there was a 12% decrease in the odds of the house having a malaria case (OR = 0.88 [0.85–0.90]). However, after controlling for distance to regions of high predicted wetness and the community in which the house was located, this reduction in malaria risk was not statistically significant (OR = 0.98 [0.94–1.03]).ConclusionProximity to terrain with high predicted water accumulation was significantly and consistently associated with increased household-level malaria incidence, even at small spatial scales with little variation in elevation variables. These results suggest that high wetness indices are not merely proxies for valley bottoms, and hydrologic flow models may prove valuable for predicting areas of high malaria risk in highland regions. Application in areas where malaria surveillance is limited could identify households at higher risk and help focus interventions.

Highlights

  • Transmission of Plasmodium falciparum generally decreases with increasing elevation, in part because lower temperature slows the development of both parasites and mosquitoes

  • Elevation has long been recognized to be associated with malaria [1] due to its association with cooler temperatures [2] that slow the development of anopheline vectors and the Plasmodium parasites they transmit [3]

  • In highland regions of East Africa, where unstable malaria transmission may result in part from the very low numbers of anopheline mosquito vectors [13], the proximity of houses to locations with suitable topography for mosquito breeding may be an important determinant of malaria risk [9]

Read more

Summary

Introduction

Transmission of Plasmodium falciparum generally decreases with increasing elevation, in part because lower temperature slows the development of both parasites and mosquitoes. Other aspects of the terrain, such as the shape of the land, may affect habitat suitability for Anopheles breeding and risk of malaria transmission. Understanding these local topographic effects may permit prediction of regions at high risk of malaria within the highlands at small spatial scales. Small temporary pools and larger more permanent ones are more likely to exist in flat, relatively low-lying regions [9] Such areas can be identified using hydrologic techniques that model how water moves across a given surface [15]. Mushinzimana et al [16] used this sort of approach to demonstrate associations between modelled wetness and larval habitat in a region of western Kenya ~30 km (but hundreds of meters lower elevation) from the study site for this project

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.