Abstract

Microelectrode maps of somatosensory inputs were related to cortical architecture and patterns of cortical connections to provide evidence for five subdivisions of the somatosensory or sensorimotor cortex in North American opossums (Didelphis marsupialis). Microelectrode recordings revealed three systematic representations of the body surface. A large mediolaterally oriented representation was identified as the primary somatosensory area (S1) by its relative position, somatotopy, architecture, and connections. S1 represented the hindlimb, trunk, forelimb, and face in a mediolateral sequence. Two additional representations of cutaneous receptors were found caudolateral to S1, each with face representations adjacent to the border of lateral S1 and other body-part representations progressing more caudally toward the auditory cortex. We identified the more dorsal field as the second somatosensory area (S2) and the more ventral field as the parietal ventral area (PV). Tracers injected into S1 labeled neurons and terminals in architectonically distinct fields rostral and caudal to S1, the somatosensory caudal area (SC) and the somatosensory rostral area (SR). Movements could be evoked by microstimulation from sites scattered over S1, SR, and the frontal cortex, but thresholds were high and uncharacteristic of motor cortex. S2 and PV merged caudally with the cortex responsive to auditory stimuli, possibly A1, and neurons in some caudal recording sites in PV were activated by both auditory and cutaneous stimuli. Primary (V1) and secondary (V2) visual areas were also identified by microelectrode mapping, architecture, and connections. In addition, at least part of the cortex between V2 and the somatosensory cortex had visual connections. Thus, most of the dorsolateral cortex of opossums appears to be somatosensory, auditory, or visual.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call