Abstract

Abrasive waterjet (AWJ) technology has been widely used for cutting materials in precision machining. The present paper reports the surface topography and microstructure of the cutting surfaces machined by AWJ. Four different kinds of ductile metallic materials were used for preparation of specimens. With the AWJ processing technique, smooth surfaces were easily obtained with a lower surface roughness about 2 to 3 μm. By comparing the microhardness of the specimens with the control surface sample obtained by wire electrodischarge machining, it is found that there is no heat-affected zone on the cutting surfaces machined by AWJ. By observing the surface morphology and microstructure, the features of friction and wear marks are revealed. The results show that a smooth cutting surface is more easily obtained on hard materials, while erosions on soft material surfaces are more serious. All scratches have a clear consistent direction, under the action of mechanical abrasive wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.