Abstract

Some geophysical or geodynamic applications require the use of true vertical gradient of gravity (VGG). This demand may be associated with reductions of or corrections to observed gravity or its spatiotemporal changes. In the absence of in situ measured VGG values, the constant value of the theoretical (normal) free air gradient (FAG) is commonly used. We propose an alternative to this practice which may significantly reduce systematic errors associated with the use of constant FAG. The true VGG appears to be better approximated, in areas with prominent and rugged topography, such as alpine or some volcanic regions, by a value based on the modelled contribution of the topographic masses to the gradient. Such prediction can be carried out with a digital elevation model (DEM) of sufficient resolution and accuracy. Here we present the VGG field computed for Mt. Etna (Italy), one of the most active and best monitored volcanoes worldwide, to illustrate how strongly the VGG deviates spatially from constant FAG. The predicted (modelled) VGG field is verified by in situ observations. We also take a look at the sensitivity of the VGG prediction to the resolution and quality of used DEMs. We conclude with discussing the applicability of the topo-predicted VGG field in near surface structural and volcanological micro-gravimetric studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call